Date:- 11 Jun, 2001 Data Sheet Issue:- 1 # **Distributed Gate Asymmetric Thyristor**Types R0878LS16x to R0878LS21x # **Absolute Maximum Ratings** | | VOLTAGE RATINGS | MAXIMUM
LIMITS | UNITS | |-----------|---|-------------------|-------| | V_{DRM} | Repetitive peak off-state voltage, (note 1) | 1600-2100 | V | | V_{DSM} | Non-repetitive peak off-state voltage, (note 1) | 1600-2100 | V | | V_{RRM} | Repetitive peak reverse voltage, (note 1) | 1300-1800 | V | | V_{RSM} | Non-repetitive peak reverse voltage, (note 1) | 1400-1900 | V | | | OTHER RATINGS | MAXIMUM
LIMITS | UNITS | |---------------------|--|---------------------|------------------| | $I_{T(AV)}$ | Mean on-state current, T _{sink} =55°C, (note 2) | 878 | Α | | $I_{T(AV)}$ | Mean on-state current. T _{sink} =85°C, (note 2) | 583 | Α | | $I_{T(AV)}$ | Mean on-state current. T _{sink} =85°C, (note 3) | 338 | Α | | I _{T(RMS)} | Nominal RMS on-state current, T _{sink} =25°C, (note 2) | 1765 | Α | | $I_{T(d.c.)}$ | D.C. on-state current, T _{sink} =25°C, (note 4) | 1456 | Α | | I _{TSM} | Peak non-repetitive surge t _p =10ms, V _{RM} =0.6V _{RRM} , (note 5) | 7500 | А | | I _{TSM2} | Peak non-repetitive surge t _p =10ms, V _{RM} ≤10V, (note 5) | 8250 | Α | | l ² t | I ² t capacity for fusing t _p =10ms, V _{RM} =0.6V _{RRM} , (note 5) | 281×10 ³ | A^2s | | I ² t | I ² t capacity for fusing t _p =10ms, V _{RM} ≤10V, (note 5) | 340×10 ³ | A ² s | | di⊤/dt | Maximum rate of rise of on-state current (repetitive), (Note 6) | 1000 | A/µs | | ui⊤/ut | Maximum rate of rise of on-state current (non-repetitive), (Note 6) | 1500 | A/µs | | V_{RGM} | Peak reverse gate voltage | 5 | V | | $P_{G(AV)}$ | Mean forward gate power | 2 | W | | P_GM | Peak forward gate power | 30 | W | | V_{GD} | Non-trigger gate voltage, (Note 7) | 0.25 | V | | T _{HS} | Operating temperature range | -40 to +125 | °C | | T _{stg} | Storage temperature range | -40 to +150 | °C | #### Notes:- - 1) De-rating factor of 0.13% per °C is applicable for T_i below 25°C. - 2) Double side cooled, single phase; 50Hz, 180° half-sinewave. - 3) Single side cooled, single phase; 50Hz, 180° half-sinewave. - 4) Double side cooled. - 5) Half-sinewave, 125°C T_j initial. - 6) $V_D=67\% \ V_{DRM}, \ I_{FG}=2A, \ t_r \le 0.5 \mu s, \ T_{case}=125 ^{\circ} C.$ - 7) Rated V_{DRM}. # **Characteristics** | | PARAMETER | MIN. | TYP. | MAX. | TEST CONDITIONS (Note 1) | UNITS | |-----------------------|--|------|------|---|--|-------| | V _{TM} | Maximum peak on-state voltage | - | - | 2.12 | I _{TM} =1400A | V | | V_0 | Threshold voltage | - | - | 1.447 | | V | | rs | Slope resistance | - | - | 0.480 | | mΩ | | dv/dt | Critical rate of rise of off-state voltage | 200 | - | - | V _D =80% V _{DRM} , linear ramp | V/µs | | I _{DRM} | Peak off-state current | - | - | 70 | Rated V _{DRM} | mA | | I _{RRM} | Peak reverse current | - | - | 70 | Rated V _{RRM} | mA | | V_{GT} | Gate trigger voltage | - | - | 3.0 | T-25°C | ٧ | | I _{GT} | Gate trigger current | - | - | 300 | $T_j=25^{\circ}C$ $V_D=10V, I_T=3A$ | mA | | I _H | Holding current | - | - | 1000 | T _j =25°C | mA | | t gt | Gate-controlled turn-on delay time | - | 0.8 | 2.0 | V _D =67% V _{DRM} , I _T =1500A, di/dt=60A/μs, | μs | | t gd | Turn-on time | - | 1.5 | 3.5 | I_{FG} =2A, t_r =0.5 μ s, T_j =25 $^{\circ}$ C | μs | | Qrr | Recovered charge | - | 720 | - | | μC | | Q _{ra} | Recovered charge, 50% Chord | - | 350 | 400 |
 I _{TM} =1000A, t _p =1000μs, di/dt=60A/μs, | μC | | Irr | Reverse recovery current | - | 160 | - | V _r =50V | Α | | t _{rr} | Reverse recovery time | - | 4.4 | - | | μs | | + | Turn-off time (note 2) | - | - | 65 | I _{TM} =1000A, t _p =1000μs, di/dt=60A/μs,
V _r =50V, V _{dr} =80%V _{DRM} , dV _{dr} /dt=20V/μs | μs | | t _q | | | 70 | I _{TM} =1000A, t _p =1000µs, di/dt=60A/µs,
V _r =50V, V _{dr} =80%V _{DRM} , dV _{dr} /dt=200V/µs | | | | В | Thermal registeres innetion to be stainly | - | - | 0.032 | Double side cooled | K/W | | R _{th(j-hs)} | Thermal resistance, junction to heatsink | - | - | 0.064 | Single side cooled | K/W | | F | Mounting force | 10 | - | 20 | | kN | | W_t | Weight | - | 340 | - | | g | # Notes:- - 1) Unless otherwise indicated T_j=125°C. - 2) The required t_q (specified with $dV_{dr}/dt=200V/\mu s$) is represented by an 'x' in the device part number. See ordering information for details of t_q codes. #### **Notes on Ratings and Characteristics** #### 1.0 Voltage Grade Table | Voltage Grade | $V_{DRM}V_{DSM}$ | $egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$ | ${\sf V}_{\sf RSM} \ {\sf V}$ | V _D
DC V | V _R
DC V | |---------------|------------------|--|-------------------------------|------------------------|------------------------| | 16 | 1600 | 1300 | 1400 | 1040 | 870 | | 18 | 1800 | 1500 | 1600 | 1150 | 985 | | 20 | 2000 | 1700 | 1800 | 1250 | 1095 | | 21 | 2100 | 1800 | 1900 | 1300 | 1150 | #### 2.0 Extension of Voltage Grades This report is applicable to other and higher voltage grades when supply has been agreed by Sales/Production. #### 3.0 Extension of Turn-off Time This Report is applicable to other t_q /re-applied dv/dt combinations when supply has been agreed by Sales/Production. #### 4.0 Repetitive dv/dt Higher dv/dt selections are available up to 1000V/µs on request. #### 5.0 De-rating Factor A blocking voltage de-rating factor of 0.13%/°C is applicable to this device for T_i below 25°C. #### 6.0 Rate of rise of on-state current The maximum un-primed rate of rise of on-state current must not exceed 1500A/µs at any time during turn-on on a non-repetitive basis. For repetitive performance, the on-state rate of rise of current must not exceed 1000A/µs at any time during turn-on. Note that these values of rate of rise of current apply to the total device current including that from any local snubber network. ### 7.0 Square wave ratings These ratings are given for load component rate of rise of forward current of 100 and 500A/µs. #### 8.0 Duty cycle lines The 100% duty cycle is represented on all the ratings by a straight line. Other duties can be included as parallel to the first. #### 9.0 Maximum Operating Frequency The maximum operating frequency is set by the on-state duty, the time required for the thyristor to turn off (t_q) and for the off-state voltage to reach full value (t_v) , i.e. $$f_{\max} = \frac{1}{t_{pulse} + t_q + t_v}$$ #### 10.0 On-State Energy per Pulse Characteristics These curves enable rapid estimation of device dissipation to be obtained for conditions not covered by the frequency ratings. Let E_p be the Energy per pulse for a given current and pulse width, in joules Let $R_{th(J-Hs)}$ be the steady-state d.c. thermal resistance (junction to sink) and T_{SINK} be the heat sink temperature. Then the average dissipation will be: $$W_{AV} = E_P \cdot f$$ and $T_{SINK \text{(max.)}} = 125 - (W_{AV} \cdot R_{th(J-Hs)})$ # 11.0 Reverse recovery ratings (i) Q_{ra} is based on 50% I_{rm} chord as shown in Fig. 1 below. Fig. 1 (ii) Q_{rr} is based on a 150μs integration time. i.e. $$Q_{rr} = \int_{0}^{150 \, \mu s} i_{rr}.dt$$ (iii) $$K Factor = \frac{t1}{t2}$$ #### 12.0 Reverse Recovery Loss #### 12.1 Determination by Measurement From waveforms of recovery current obtained from a high frequency shunt (see Note 1, Page 5) and reverse voltage present during recovery, an instantaneous reverse recovery loss waveform must be constructed. Let the area under this waveform be E joules per pulse. A new heat sink temperature can then be evaluated from: $$T_{SINK(new)} = T_{SINK(original)} - E \cdot (k + f \cdot R_{th(J-Hs)})$$ where k = 0.227 (°C/W)/s E = Area under reverse loss waveform per pulse in joules (W.s.) f = rated frequency Hz at the original heat sink temperature. $R_{th(J-Hs)}$ = d.c. thermal resistance (°C/W). The total dissipation is now given by: $$W_{(TOT)} = W_{(original)} + E \cdot f$$ #### 12.2 Determination without Measurement In circumstances where it is not possible to measure voltage and current conditions, or for design purposes, the additional losses E in joules may be estimated as follows. Let E be the value of energy per reverse cycle in joules (curves in Figure 9). Let f be the operating frequency in Hz $$T_{SINK(new)} = T_{SINK(original)} - (E \cdot R_{th} \cdot f)$$ Where $T_{SINK \, (new)}$ is the required maximum heat sink temperature and $T_{SINK \, (original)}$ is the heat sink temperature given with the frequency ratings. A suitable R-C snubber network is connected across the thyristor to restrict the transient reverse voltage to a peak value (V_{rm}) of 67% of the maximum grade. If a different grade is being used or V_{rm} is other than 67% of Grade, the reverse loss may be approximated by a pro rata adjustment of the maximum value obtained from the curves. #### NOTE 1- Reverse Recovery Loss by Measurement This thyristor has a low reverse recovered charge and peak reverse recovery current. When measuring the charge care must be taken to ensure that: - (a) a.c. coupled devices such as current transformers are not affected by prior passage of high amplitude forward current. - (b) A suitable, polarised, clipping circuit must be connected to the input of the measuring oscilloscope to avoid overloading the internal amplifiers by the relatively high amplitude forward current signal - (c) Measurement of reverse recovery waveform should be carried out with an appropriate critically damped snubber, connected across diode anode to cathode. The formula used for the calculation of this snubber is shown below: $$R^2 = 4 \cdot \frac{V_r}{C_S \cdot \frac{di}{dt}}$$ Where: V_r = Commutating source voltage C_S = Snubber capacitance R = Snubber resistance # 13.0 Gate Drive The recommended pulse gate drive is 30V, 15Ω with a short-circuit current rise time of not more than 0.5 μ s. This gate drive must be applied when using the full di/dt capability of the device. The duration of pulse may need to be configured with respect to the application but should be no shorter than $20\mu s$, otherwise an increase in pulse current could be needed to supply the resulting increase in charge to trigger. #### 14.0 Computer Modelling Parameters # 14.1 Calculating V_T using ABCD Coefficients The on-state characteristic I_T vs V_T , on page 7 is represented in two ways; - (i) the well established Vo and rs tangent used for rating purposes and - (ii) a set of constants A, B, C, D, forming the coefficients of the representative equation for V_T in terms of I_T given below: $$V_T = A + B \cdot \ln(I_T) + C \cdot I_T + D \cdot \sqrt{I_T}$$ The constants, derived by curve fitting software, are given in this report for hot and cold characteristics where possible. The resulting values for V_T agree with the true device characteristic over a current range, which is limited to that plotted. | 125°C Coefficients | | | | | | |--------------------|---------------------------|--|--|--|--| | Α | 1.510816 | | | | | | В | -0.01749119 | | | | | | С | 4.616469×10 ⁻⁴ | | | | | | D | 2.404072×10 ⁻³ | | | | | #### 14.2 D.C. Thermal Impedance Calculation $$r_t = \sum_{p=1}^{p=n} r_p \cdot \left(1 - e^{\frac{-t}{\tau_p}}\right)$$ Where p = 1 to n, n is the number of terms in the series. t = Duration of heating pulse in seconds. r_t = Thermal resistance at time t. r_p = Amplitude of p_{th} term. τ_p = Time Constant of r_{th} term. | D.C. Double Side Cooled | | | | | | | |-------------------------|--------------|---------------------------|---------------------------|---------------------------|--|--| | Term | Term 1 2 3 4 | | | | | | | r_{p} | 0.01771901 | 4.240625×10 ⁻³ | 6.963806×10 ⁻³ | 3.043661×10 ⁻³ | | | | $ au_{\!p}$ | 0.7085781 | 0.1435833 | 0.03615196 | 2.130842×10 ⁻³ | | | | D.C. Single Side Cooled | | | | | | | |-------------------------|------------|------------|---------------------------|---------------------------|---------------------------|--| | Term | 1 | 2 | 3 | 4 | 5 | | | r_p | 0.03947164 | 0.01022837 | 8.789912×10 ⁻³ | 4.235162×10 ⁻³ | 1.907609×10 ⁻³ | | | $ au_{p}$ | 4.090062 | 1.078983 | 0.08530917 | 0.01128791 | 1.240861×10 ⁻³ | | #### **Curves** Figure 1 - On-state characteristics of Limit device Figure 2 - Transient thermal impedance Figure 3 - Gate characteristics - Trigger limits Figure 4 - Gate characteristics - Power curves Figure 5 - Total recovered charge, Q_{rr} 10000 Total recovered charge - Q_{rr} (µC) 2000A 1500A 1000A 500A 1000 T_i = 125°C R0878LS16x-21x Issue 1 100 10 100 1000 Commutation rate - di/dt (A/µs) Figure 6 - Recovered charge, Q_{ra} (50% chord) Figure 7 - Peak reverse recovery current, I_{rm} Figure 8 - Maximum recovery time, t_{rr} (50% chord) Figure 10 - Sine wave energy per pulse Figure 11 - Sine wave frequency ratings Figure 12 - Sine wave frequency ratings Figure 14 - Square wave frequency ratings Figure 15 - Square wave frequency ratings Figure 16 - Square wave frequency ratings Figure 18 - Square wave energy per pulse Figure 19 - Maximum surge and I²t Ratings ### **Outline Drawing & Ordering Information** | R0878 LS | | * * | • | | |--------------------|--|------------|---|--| | Fixed
Type Code | | | t _q Code (200V/μs)
K=60μs, L=65μs, M=70μs | | Typical order code: R0878LS16L - 1600V VDRM, 1300V VRRM, 65µs tq, 27.7mm clamp height capsule. # WESTCODE UK: Westcode Semiconductors Ltd. P.O. Box 57, Chippenham, Wiltshire, England. SN15 1JL. Tel: +44 (0) 1249 444524 Fax: +44 (0) 1249 659448 E-Mail: WSL.sales@westcode.com USA: Westcode Semiconductors Inc. 3270 Cherry Avenue, Long Beach, California 90807 Tel: 562 595 6971 Fax: 562 595 8182 E-Mail: WSI.sales@westcode.com Internet: http://www.westcode.com The information contained herein is confidential and is protected by Copyright. The information may not be used or disclosed except with the written permission of and in the manner permitted by the proprietors Westcode Semiconductors Ltd. © Westcode Semiconductors Ltd. In the interest of product improvement, Westcode reserves the right to change specifications at any time without prior notice. Devices with a suffix code (2-letter or letter/digit/letter combination) added to their generic code are not necessarily subject to the conditions and limits contained in this report.